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Abstract
Previous work on automatic VOT measurement has fo-
cused on positive-valued VOT. However, in many lan-
guages VOT can be either positive or negative (“pre-
voiced”). We present a discriminative algorithm that si-
multaneously decides whether a stop is prevoiced and
measures its VOT. The algorithm operates on feature
functions designed to locate the burst and voicing on-
sets in the positive and negative VOT cases. Tested on
a database of positive- and negative-VOT voiced stops,
the algorithm predicts prevoicing with >90% accuracy,
and gives good agreement between automatic and man-
ual measurements.
Index Terms: voice onset time, automatic phonetic mea-
surement, discriminative methods, structured prediction

1. Introduction
Voice onset time (VOT), the time between the onset of a
stop burst and the onset of voicing, is an important cue to
stop voicing and place. It is widely measured in theoreti-
cal and clinical settings, for example to characterize how
communication disorders affect speech [1] or how lan-
guages differ in the phonetic cues to stop contrasts [2, 3];
it is also increasingly used as a feature for ASR tasks such
as stop consonant classification [4, 5, 6]. Automatic VOT
measurement would be very beneficial for clinical and
theoretical studies, where it is currently usually measured
manually, and is essential for ASR applications.

Several recent studies have proposed VOT measure-
ment algorithms [5, 6, 7, 8],1 all making the assumption
that VOT is positive (burst onset precedes voicing onset).
However, VOT can in general also be negative (voicing
onset precedes burst onset), in which case the stop is “pre-
voiced.” In English, for example, voiceless stops (/p/, /t/,
/k/) always have positive VOT, while voiced stops (/b/,
/d/, /g/) can have positive or negative VOT. In Dutch and
French, voiced stops usually have negative VOT, while
voiceless stops have positive VOT [9]. The spectral cues
that indicate negative VOT differ considerably from those
used to identify positive VOT, for example due to the
presence of more low-frequency energy when detecting a

1This list is not exhaustive, due to space considerations.

voiced rather than voiceless burst. To handle an arbitrary
stop consonant, a VOT measurement algorithm must per-
form two tasks: decide whether the VOT is positive or
negative and return a VOT measurement.

We present an extension of the algorithm for positive
VOT-only in [7] that performs these tasks, and can there-
fore be applied to both voiced and voiceless stops. Given
a set of labeled training data containing both positive and
negative VOT examples, two classifiers are learned. Ap-
plied to a speech segment containing a stop burst, the
classifiers determine the most likely positive and nega-
tive VOT values, as well as a confidence measure for
each. The stop’s VOT is predicted to be the value with
the higher confidence. The classifiers operate on two sets
of customized features based on spectro-temporal cues to
the location of the burst and voicing onsets in the positive
and negative VOT cases.

2. Problem definition
The input to our algorithm is a speech segment containing
a single stop consonant, and the output is the sign and ab-
solute value of the stop’s VOT. The speech segment can
be of arbitrary length, and its beginning need not be syn-
chronized with the burst onset, the voicing onset, or the
closure; it is only required that the segment begins before
and ends after the burst onset and the voicing onset.

Let x̄ = (x1, . . . ,xT ) denote the speech segment,
represented as a sequence of acoustic feature vectors,
where each xt ∈ RD (1 ≤ t ≤ T ) is a D-dimensional
vector. The length of the speech segment, T , is not a
fixed value since speech segments can have different du-
rations. Each speech segment is associated with a pair of
numbers: the onset of the burst, tb ∈ T , and the onset
of the voicing, tv ∈ T , where T = {1, . . . , T}. We call
this pair an onset pair. We distinguish between two types
of stop realization: the vocal cords may begin vibrating
after the burst onset (tb < tv: positive VOT), or voic-
ing may begin before the burst onset (tb > tv: negative
VOT). We denote by s ∈ S the type of stop realization,
where S = {pos, neg}.

Our goal is to learn a function f : X ∗ → T ×T ×S,
that maps the domain of all speech segments to the do-
main of all onset pairs and stop realizations. Given in-



put speech segment, x̄, we define the cost of predict-
ing (t̂b, t̂v, ŝ) = f(x̄), when the manual annotation is
(tb, tv, s), using the following cost function

γ
(
(tb, tv, s), (t̂b, t̂v.ŝ)

)
={

max{|(t̂v − t̂b)− (tv − tb)| − γ0, 0} s = ŝ
γm s 6= ŝ

(1)

γm is a user-defined parameter that penalizes an incor-
rect prediction of the VOT’s sign. The threshold γ0 is a
user-defined parameter that allows small annotation inac-
curacies and inconsistencies, given that the VOT’s sign
is correctly predicted. If we set γ0 to 3 msec, for exam-
ple, then differences between the manually labeled VOT
(tv − tb) and predicted VOT (t̂v − t̂b), which are less
than 3 msec, are not counted in the cost function. The
goal of the learning algorithm is to find the function f
that minimizes the expected cost, where the expectation
is taken with respect to a fixed but unknown distribution
over speech segments and the onset pairs. In the next
section we present a learning algorithm that aims to min-
imize the expected cost.

3. Discriminative learning
Similarly to previous work in structured prediction [10,
11], the function f is constructed from a predefined set
of N feature maps {φi}Ni=1, each of the form φi : X ×
T × T × S → RN , and a weight vector w ∈ RN . The
function is a linear decoder of the following form

(t̂b, t̂v, ŝ) = arg max
(tb,tv,s)

w · φ(x̄, tb, tv, s), (2)

where we have used vector notation for the feature maps
φ = (φ1, . . . , φN )>. This vector-valued function is used
to map the variable length speech segment along with a
onset pair and stop realization type to an abstract vector
space in RN . For a given speech segment, x̄, each onset
pair (tb, tv) and realization type s correspond to a sin-
gle vector in RN . The algorithm presented here should
set the weights w such that the projection of w onto the
vector corresponding to the manually labeled onset pair
(tb, tv) and correct realization type s should be maxi-
mized relative to the vectors corresponding to all other
onset pairs and realization types.

3.1. Iterative algorithm

Recall that our learning algorithm receives as input a
training set S = {(x̄i, tbi , tvi , si)}mi=1 and returns a
weight vector w, which defines the decoding function in
Eq. (2). The weight vector is learned using an iterative
algorithm based on the family of algorithms described in
[12] for structured prediction. Let wt be the weight vec-
tor after the tth iteration, and let w0 = 0. On each iter-
ation we consider a single example (x̄i, tbi , tvi , si), and

use the current weight vector wt to predict its VOT and
realization type x̄i as:

(t̂b, t̂v, ŝ) = arg max
(tb,tv,s)

wt · φ(x̄i, tb, tv, s)

+ γ
(
(tbi , tvi , si), (t̂b, t̂v, ŝ)

)
. (3)

Next, we update the weight vector wt+1 to be

wt+1 = wt + τt ∆φt , (4)

where ∆φt = φ(x̄i, tbi , tvi , si)− φ(x̄i, t̂b, t̂v, ŝ), and

τt =
γ
(
(tbi , tvi , si), (t̂b, t̂v, ŝ)

)
−wt ·∆φt

‖∆φt‖2
.

In words, we add to wt a vector which is a scaled ver-
sion of the difference between the feature maps resulting
from the manual annotation φ(x̄i, tbi , tvi , si) and from
the prediction φ(x̄i, t̂b, t̂v, ŝ).

3.2. Decomposition by stop realization type

The feature maps take as input a speech segment x̄, an
onset pair (tb, tv) and a stop realization type s. They are
designed to have high values when (tb, tv) and s make
sense given x̄ and to have lower values otherwise. We de-
compose the vector-valued function φ into two portions:
φ+ : X × T × T → RN+

, which is used when tb < tv ,
and φ− : X × T × T → RN−

, which is used when
tv < tb, with N = N+ +N−. That is,

φ(x̄, tb, tv, s) =

[
1{s=pos} φ

+(x̄, tb, tv)
1{s=neg} φ

−(x̄, tb, tv)

]
when 1{x} is the indicator function. The weight vector w
can similarly be split into two parts: w = (w+,w−)>.

The prediction of Eq. (2) is now performed in two
phases. We first predict the positive and negative VOTs:

(t+b , t
+
v ) = arg max

(tb,tv)
w+ · φ+(x̄, tb, tv) (5)

(t−b , t
−
v ) = arg max

(tb,tv)
w− · φ−(x̄, tb, tv). (6)

We then predict the stop realization type based on the
confidences of these predictions. If w+ ·φ+(x̄, t+b , t

+
v ) >

w− ·φ−(x̄, t−b , t
−
v ) then (t̂b, t̂v) = (t+b , t

+
v ) and s = pos,

otherwise (t̂b, t̂v) = (t−b , t
−
v ) and s = neg. Under this

decomposition, the update rule of Eq. (4) becomes

w+
t+1 = w+

t + τt∆φ+
t (7)

w−t+1 = w−t + τt∆φ−t , (8)

where ∆φ+
t = φ+(x̄i, tbi , tvi) − φ+(x̄i, t̂

+
b , t̂

+
v ) and

∆φ−t = φ−(x̄i, tbi , tvi) − φ−(x̄i, t̂
−
b , t̂
−
v ), and under

the convention that φ+(x̄, tb, tv) = 0 for tv ≤ tb and
φ−(x̄, tb, tv) = 0 when tb ≤ tv .



Two cases will serve to exemplify the update rule.
Case I: An example where tbi < tvi , so si = pos. As-
sume the classifier wt labels the speech segment x̄i as
ŝ = neg, hence t̂v < t̂b. The update rule is then

w+
t+1 = w+

t + τtφ
+(x̄i, tbi , tvi)

w−t+1 = w−t − τtφ
−(x̄i, t̂

−
b , t̂
−
v ),

where we set φ+(x̄, t̂b, t̂v) = 0 because t̂v < t̂b, and
φ−(x̄, tbi , tvi) = 0 because tbi < tvi . The update rule
increases the weight vector w+, since this example’s la-
beled VOT was positive, and decreases the weight vector
w−, which was too high relative to w+ for this example.

Case II: An example where tbi < tvi (si = pos).
Assume the classifier labels this example as t̂b < t̂v
(ŝ = pos), but the cost in the prediction is not zero:
|(t̂v − t̂b)− (tv − tb)| > γ0. The update rule is then

w+
t+1 = w+

t + τt
[
φ+(x̄i, tbi , tvi)− φ+(x̄i, t̂b, t̂v)

]
w−t+1 = w−t .

The update rule adjusts the positive weight vector w+ to
predict positive VOT more accurately, and the negative
weight vector w− is left intact. This case demonstrates
a nice property of the algorithm: if trained on only ex-
amples of positive (or negative) VOT, it reduces to the
algorithm presented in [7].

3.3. Feature maps

Similarly to [7], seven (D=7) features are extracted from
the speech signal every 1 ms. The first five features refer
to an STFT taken with a 5 ms Hamming window: the to-
tal spectral energy (Etotal), energy between 50–1000 Hz
(Elow), energy above 3000 Hz (Ehigh), Wiener entropy
(Hwiener), and the number of zero crossings of the signal
(ZC). Features 6–7 are the maximum of the FFT of the
autocorrelation function of the signal from 6 ms before to
18 ms after the frame center (Rl), and a binary voicing
detector based on the RAPT pitch tracker [13], smoothed
with a 5 ms Hamming window (V ).

The vector φ = (φ+,φ−)> contains N=112 feature
maps, 59 of which (φ+) are used to estimate tb and tv for
the positive VOT case, and 54 of which (φ−) are used to
estimate them for the negative VOT case. φ+ consists of
the feature maps described in [7], and φ− consists of the
maps described below.

We denote the time interval [t1, t2] by T t2
t1 . Also, we

define ∆s
t (x

d) to be an approximation of the derivative
of acoustic feature d at frame t, as the difference between
the mean of xd over T t+s

t and the mean over T t
t−s. The

following feature maps make up φ−:

• logEtotal, logElow, logEhigh, Hwiener, V evaluated
at tv and tb (10 functions)

• ∆s
tb

(xd) for s ∈ {5, 10, 15}, and d ∈ {logEtotal,
logElow, logEhigh, logHwiener} (12 functions)

• ∆s
tv (xd) for s ∈ {5, 10, 15} and d ∈ {logEtotal,

logEhigh, logHwiener} (9 functions)
• Mean of ∆s

t (x
d) over T tb

tv for d ∈ {logElow,
logEhigh, logHwiener} and s ∈ {5, 10} (6 func-
tions)

• Mean of V over T tv
tv−15 and T tb

tv (2 functions)

• Mean of logEtotal over T tb−10
tv , T tb+50

tb
, and

T tv+15
tv (3 functions)

• Difference of the mean of V , Ehigh, and Hwiener

over T tb−10
tv and over T tv−5

tv−50 (3 functions)
• Difference of the mean of V , Elow, Ehigh, and
Hwiener over T tb+50

tb
and over T tb−10

tv (4 functions)

• Difference of the maximum of Ehigh over T tb−5
tv

and over T tv−5
tv−50 (1 function)

• Difference of the maximum of Ehigh and Hwiener

over T tb+50
tb

and over T tb−5
tv (2 functions)

• Maximum of Elow over T tb−5
tv (1 function)

These feature maps were chosen by empirical exam-
ination of the spectra and waveform of voiced stops with
negative VOTs. Compared to the feature maps in φ+,
those in φ− make greater use of the spectral energy fea-
tures, and do not use the autocorrelation function or the
zero crossing rate, which we found were not reliable cues
for the location of prevoicing.

4. Experiments
The data come from a study of isolated word productions
by L1 English speakers and L1 Portuguese/L2 English
bilinguals [14]. We used a subset of this data consist-
ing of 1331 word-initial voiced stops, of which 465/866
had negative/posiitve VOTs, produced by 10 speakers (3
monolingual, 7 bilingual). We performed experiments by
cross validation: the data was divided into 4 folds, each
of which was used as the test set for a classifier trained
on the other 3 folds for 3 epochs. The cost parameters
in Eqn. (1) were set to γ0=4 and γm=100. We report re-
sults in two ways: the percentage of test examples where
automatic and manual VOT measurements differ by less
than a series of time thresholds, and the mean absolute
difference of automatic and manual measurements.

Negative only: We first evaluate the algorithm’s per-
formance on prevoiced stops alone, by training and test-
ing only on examples with negative VOTs. During train-
ing only w− is updated, and w+ remains 0; at test time
all examples are classified as negative. Row 2 of Table
1 summarizes the distribution of errors in this case; the
mean absolute error is 4.4 ms. To our knowledge there
is no previous work on automatic measurement of nega-
tive VOTs, nor any phonetic studies which report inter-
transcriber agreement for prevoiced stops alone, so we
cannot compare our results to previous work. However,
4.4 ms is within the range of values typically reported for



Table 1: Percent of automatic and manual measurements
for test examples differing by less than t ms.

Train Test t=2 t=5 t=10 t=15 t=25 t=50

neg neg 55.2 78.2 92.0 94.7 98.3 99.5
joint neg (correct) 53.9 77.1 92.7 96.0 98.8 100
joint neg (all) 49.4 70.8 85.2 88.2 91.0 95.3

pos pos 50.4 80.0 93.4 94.2 95.4 96.7
joint pos (correct) 53.2 84.4 97.2 98.3 98.7 99.0
joint pos (all) 47.9 75.9 87.5 88.6 89.4 95.1

intertranscriber agreement on VOT in phonetic studies.
Joint classification: We next tested the algorithm on

the full dataset of both positive and negative VOT exam-
ples. During training both w− and w+ are updated, and
at test time the algorithm decides on a sign and VOT mea-
surement for each example.

We first discuss performance on classifying VOT sign
for the test examples. 9.9% of the positive-VOT exam-
ples were misclassified as negative, and 7.5% of negative-
VOT examples were misclassified as positive. We are not
aware of previous work where a prevoicing detector is
evaluated. We can indirectly evaluate our results relative
to human performance by considering the rates at which
speakers of Dutch—a language where voiced (voiceless)
stops are usually realized with (without) prevoicing—
misclassify word-initial voiceless stops as voiced (a), and
vice versa (b). Two studies give rates of 4.3–19.0% for
(a) and 13.6–20.0% for (b). [15, 16]. Relative to this
rough gold standard, our algorithm performs well.

Next, we consider the distribution of auto-
matic/manual measurement differences. Rows 4
and 7 of Table 1 summarize the error for all positive
and negative test examples, including those where the
sign was misclassified. Comparing to Rows 2 and 5
shows how much performance suffers due to the sign
of the VOT test data being unknown. (Row 5 shows
results for training and testing on positive-VOT data
only, analogously to the procedure in “Negative only”
above.) Error increases at all t for both positive and
negative data (more for negative), but not drastically:
about 2-8%. The mean absolute error increases from
4.4 to 10.1 ms for negative VOT examples, and from
7.7 to 9.7 ms for positive VOT examples. Rows 3 and 6
summarize the error just for examples where the VOT’s
sign was correctly predicted. Comparing to Rows 4
and 7 shows how much performance suffers due to
sometimes predicting the wrong sign, about 4-10% at
different t. The mean absolute error increases from 4.6
to 9.7 ms for positve-VOT data and from 4.1 to 10.1 ms
for negative-VOT data. While the mean error values of
10 ms are higher than the figures usually reported for
intertranscriber agreement on VOT in phonetic studies
(about 2-6 ms), we note that the high mean absolute

errors are largely due to huge errors on the small fraction
of examples (<10%) where the wrong sign is chosen.

5. Discussion
We have presented an extension of the automatic VOT
measurement method of [7] to handle both positive and
negative VOT. To our knowledge, this is the first algo-
rithm for measuring negative VOT, the first evaluation
of a prevoicing detector, and the first measurement al-
gorithm for the general case where VOT can be either
positive or negative.
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